
A laptop computer, or simply laptop (also notebook computer, notebook and notepad) is a small mobile computer, which usually weighs 2-18 pounds[citation needed] (around 1 to 8 kilograms[citation needed]), depending on size, materials, and other factors.
Laptops usually run on a single main battery or from an external AC/DC adapter that charges the battery while also supplying power to the computer itself. Many computers also have a 3 volt cell to run the clock and other processes in the event of a power failure.
Laptops contain components that are similar to their desktop counterparts and perform the same functions, but are miniaturized and optimized for mobile use and efficient power consumption, although typically less powerful for the same price. Laptops usually have liquid crystal displays and most of them use different memory modules for their random access memory (RAM), for instance, SO-DIMM in lieu of the larger DIMMs. In addition to a built-in keyboard, they may utilize a touchpad (also known as a trackpad) or a pointing stick for input, though an external keyboard or mouse can usually be attached.
Contents[hide]
1 History
2 Types
2.1 Mainstream
2.2 Desktop replacement computers
2.3 Thin-and-light
3 Parts
4 Disadvantages
4.1 Parts standardization and compatibility issues
4.2 Durability Issues
5 Advantages
6 Upgradeability
7 Performance
8 Health issues
9 Security
10 Related devices
11 Major brands and manufacturers
12 See also
13 External links
14 References
//
[edit] History
Main article: History of laptops
Laptops have grown (or have grown less in size) and become more sophisticated over the years.
[edit] Types
[edit] Mainstream
Laptops weighing between 5 and 7 lb (2.3–3.2 kg) with a screen size of 14.1 or 15.4 inches (35 or 39 cm) diagonally.
[edit] Desktop replacement computers
Main article: Desktop replacement computer
Powerful laptops meant to be mainly used in a fixed location and infrequently carried out due to their weight and size; the latter provides more space for powerful components and a big screen, usually measuring 17–20 inches (43–51 cm). Desktop replacements tend to have limited battery life, rarely exceeding three hours, because the hardware is not optimized for efficient power usage. Sometimes called a luggable laptop. An example of a desktop replacement computers are gaming notebooks, which are designed to handle 3D graphic-intensive processing for gamers.
[edit] Thin-and-light
Main article: Subnotebook
Laptops weighing typically between 4.6 and 6 lb (1.8–2.7 kg) and a screen of 12 to 14 inches (30–35 cm) diagonally.
[edit] Parts
2.5" hard disk drive
Most modern laptops feature 12 inch (30 cm) or larger active matrix displays with resolutions of 1024×768 pixels and above, and have a PC Card (formerly PCMCIA) or ExpressCard expansion bay for expansion cards. Internal hard disks are physically smaller—2.5 inch (60 mm)—compared to the standard desktop 3.5 inch (90 mm) drive, and usually have lower performance and power consumption. Video and sound chips are usually integrated. This tends to limit the use of laptops for gaming and entertainment, two fields which have constantly escalating hardware demands.[1] However, higher end laptops can come with dedicated graphics processors, such as the Dell Inspiron E1505 and E1705, which can be bought with an ATI Mobility Radeon X1300 or similar or the MacBook Pro which comes standard with an nVidia 8600M GT. These mobile graphics processors tend to have less performance than their desktop counterparts, but this is because they have been optimized for lower power usage.
There is a wide range of laptop specific processors available from Intel (Pentium M, Celeron, Intel Core and Intel Core 2) and from AMD (Athlon, Turion 64, and Sempron) and also from VIA (C3 and C7-M). Motorola and IBM developed and manufactured the chips for the former PowerPC-based Apple laptops (iBook and PowerBook). Generally, laptop processors are less powerful than their desktop counterparts, due to the need to save energy and reduce heat dissipation. However, the PowerPC G3 and G4 processor generations were able to offer almost the same performance as their desktop versions, limited mostly by other factors, such as the system bus bandwidth; recently, though, with the introduction of the G5s, they have been far outstripped. At one point, the Pismo G3, at up to 500 MHz, was faster than the fastest desktop G3 (then the B&W G3), which ran at 450 MHz.
Some parts for a modern laptop have no corresponding part in a desktop computer. For example, current models use lithium ion and more recently lithium polymer batteries, which have largely replaced the older nickel metal-hydride technology. Typical battery life for most laptops is two to five hours with light-duty use, but may drop to as little as one hour with intensive use. Batteries gradually deteriorate over time and eventually need to be replaced in one to five years, depending on the charging and discharging pattern.
Laptops typically use SODIMMs, as shown here.
Docking stations became another common laptop accessories in the early 1990s. They typically were quite large and offered 3.5" and 5.25" storage bays, one to three expansion slots (typically AT style), and a host of connectors. The mating between the laptop and docking station was typically through a large, high-speed, proprietary connector. The most common use was in a corporate computing environment where the company had standardized on a common network card and this same card was placed into the docking station. These stations were very large and quite expensive. As the need to additional storage and expansion slots became less critical because of the high integration inside the laptop itself, the emergence of the Port Replicator as a major accessory commenced. The Port Replicator was often a passive device that simply mated to the connectors on the back of the notebook and allowed the user to quickly connect their laptop so VGA, PS/2, RS-232, etc. devices were instantly attached. As higher speed ports like USB and Firewire became commonplace, the Port Replication was accomplished by a small cable connected to one of the USB 2.0 or FireWire ports on the notebooks. Wireless Port Replicators followed.
Virtually all laptops can be powered from an external AC converter. This device typically adds half a kilogram (1 lb) to the overall "transport weight" of the equipment.
A pointing stick or touchpad is used to control the position of the cursor on the screen. The pointing stick is usually a rubber dot that is located between the G, H and B keys on the laptop keyboard. To navigate the cursor, pressure is applied in the direction intended to move. The touchpad is touch-sensitive and the cursor can be navigated by moving the finger on the pad.
Intel, Asus, Compal, Quanta and other laptop manufacturers have created Common Building Block standard for laptop parts.
[edit] Disadvantages
Laptops usually run on a single main battery or from an external AC/DC adapter that charges the battery while also supplying power to the computer itself. Many computers also have a 3 volt cell to run the clock and other processes in the event of a power failure.
Laptops contain components that are similar to their desktop counterparts and perform the same functions, but are miniaturized and optimized for mobile use and efficient power consumption, although typically less powerful for the same price. Laptops usually have liquid crystal displays and most of them use different memory modules for their random access memory (RAM), for instance, SO-DIMM in lieu of the larger DIMMs. In addition to a built-in keyboard, they may utilize a touchpad (also known as a trackpad) or a pointing stick for input, though an external keyboard or mouse can usually be attached.
Contents[hide]
1 History
2 Types
2.1 Mainstream
2.2 Desktop replacement computers
2.3 Thin-and-light
3 Parts
4 Disadvantages
4.1 Parts standardization and compatibility issues
4.2 Durability Issues
5 Advantages
6 Upgradeability
7 Performance
8 Health issues
9 Security
10 Related devices
11 Major brands and manufacturers
12 See also
13 External links
14 References
//
[edit] History
Main article: History of laptops
Laptops have grown (or have grown less in size) and become more sophisticated over the years.
[edit] Types
[edit] Mainstream
Laptops weighing between 5 and 7 lb (2.3–3.2 kg) with a screen size of 14.1 or 15.4 inches (35 or 39 cm) diagonally.
[edit] Desktop replacement computers
Main article: Desktop replacement computer
Powerful laptops meant to be mainly used in a fixed location and infrequently carried out due to their weight and size; the latter provides more space for powerful components and a big screen, usually measuring 17–20 inches (43–51 cm). Desktop replacements tend to have limited battery life, rarely exceeding three hours, because the hardware is not optimized for efficient power usage. Sometimes called a luggable laptop. An example of a desktop replacement computers are gaming notebooks, which are designed to handle 3D graphic-intensive processing for gamers.
[edit] Thin-and-light
Main article: Subnotebook
Laptops weighing typically between 4.6 and 6 lb (1.8–2.7 kg) and a screen of 12 to 14 inches (30–35 cm) diagonally.
[edit] Parts
2.5" hard disk drive
Most modern laptops feature 12 inch (30 cm) or larger active matrix displays with resolutions of 1024×768 pixels and above, and have a PC Card (formerly PCMCIA) or ExpressCard expansion bay for expansion cards. Internal hard disks are physically smaller—2.5 inch (60 mm)—compared to the standard desktop 3.5 inch (90 mm) drive, and usually have lower performance and power consumption. Video and sound chips are usually integrated. This tends to limit the use of laptops for gaming and entertainment, two fields which have constantly escalating hardware demands.[1] However, higher end laptops can come with dedicated graphics processors, such as the Dell Inspiron E1505 and E1705, which can be bought with an ATI Mobility Radeon X1300 or similar or the MacBook Pro which comes standard with an nVidia 8600M GT. These mobile graphics processors tend to have less performance than their desktop counterparts, but this is because they have been optimized for lower power usage.
There is a wide range of laptop specific processors available from Intel (Pentium M, Celeron, Intel Core and Intel Core 2) and from AMD (Athlon, Turion 64, and Sempron) and also from VIA (C3 and C7-M). Motorola and IBM developed and manufactured the chips for the former PowerPC-based Apple laptops (iBook and PowerBook). Generally, laptop processors are less powerful than their desktop counterparts, due to the need to save energy and reduce heat dissipation. However, the PowerPC G3 and G4 processor generations were able to offer almost the same performance as their desktop versions, limited mostly by other factors, such as the system bus bandwidth; recently, though, with the introduction of the G5s, they have been far outstripped. At one point, the Pismo G3, at up to 500 MHz, was faster than the fastest desktop G3 (then the B&W G3), which ran at 450 MHz.
Some parts for a modern laptop have no corresponding part in a desktop computer. For example, current models use lithium ion and more recently lithium polymer batteries, which have largely replaced the older nickel metal-hydride technology. Typical battery life for most laptops is two to five hours with light-duty use, but may drop to as little as one hour with intensive use. Batteries gradually deteriorate over time and eventually need to be replaced in one to five years, depending on the charging and discharging pattern.
Laptops typically use SODIMMs, as shown here.
Docking stations became another common laptop accessories in the early 1990s. They typically were quite large and offered 3.5" and 5.25" storage bays, one to three expansion slots (typically AT style), and a host of connectors. The mating between the laptop and docking station was typically through a large, high-speed, proprietary connector. The most common use was in a corporate computing environment where the company had standardized on a common network card and this same card was placed into the docking station. These stations were very large and quite expensive. As the need to additional storage and expansion slots became less critical because of the high integration inside the laptop itself, the emergence of the Port Replicator as a major accessory commenced. The Port Replicator was often a passive device that simply mated to the connectors on the back of the notebook and allowed the user to quickly connect their laptop so VGA, PS/2, RS-232, etc. devices were instantly attached. As higher speed ports like USB and Firewire became commonplace, the Port Replication was accomplished by a small cable connected to one of the USB 2.0 or FireWire ports on the notebooks. Wireless Port Replicators followed.
Virtually all laptops can be powered from an external AC converter. This device typically adds half a kilogram (1 lb) to the overall "transport weight" of the equipment.
A pointing stick or touchpad is used to control the position of the cursor on the screen. The pointing stick is usually a rubber dot that is located between the G, H and B keys on the laptop keyboard. To navigate the cursor, pressure is applied in the direction intended to move. The touchpad is touch-sensitive and the cursor can be navigated by moving the finger on the pad.
Intel, Asus, Compal, Quanta and other laptop manufacturers have created Common Building Block standard for laptop parts.
[edit] Disadvantages
No comments:
Post a Comment